10. V. A. Levin and A. M. Starik, "Vibrational energy exchange in H,0—H, mixtures in shock waves," Izv.
Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1 (1979).

11. V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Relativistic Quantum Theory [in Russian], Part 1,
Nauka, Moscow (1968).

12. G. A. Simons, "Rarefaction effect in high-altitude rocket plumes,® AIAA J., 10, No. 3 (1972).

13. B. F. Gordiets, A. I. Osipov, and L. A. Shelepin, Kinetic Processes in Gases and Molecular Lasers [in
Russian], Nauka, Moscow (1980).

ELECTRIFICATION IN TUBE FLOW OF ORGANIC LIQUIDS
WITH AN ADMIXTURE OF STRONG ELECTROLYTE

V. N. Pribylov and L. T. Chernyi UDC 532.54:541.13

The electrification of weakly conducting organic liquids is investigated within the framework of con-
tinuum mechanics [1]. When such liquids (e.g., hydrocarbons) flow through tubes they acquire an electric charge
[2-5]. This leads to the risk of electric discharges and explosions [4]. The conductivity of the considered
liquids is due to a small amount of impurity electrolyte, whose molecules dissociate into positive and negative
ions. According to recent ideas [2-5], the electrification of organic liquids is due to electrochemical reac-
tions occurring on the tube walls, as a result of which the positive or negative ions of the impurity electrolyte
are converted to neutral molecules. The problem of electrification of a liquid in the case of a completely dis-
sociated electrolyte was examined in [5], where the effect of the electric field was ignored. The electrification
of a weakly conducting liquid, inthe case where the impurity electrolyte dissociates slightly and the dissocia~
tion can be regarded as an equilibrium reaction, was investigated in [6].

In this paper we examine the problem of electrification of an initially unchanged weakly conducting or-
ganic liquid in laminar flow in a metal tube, where the impurity electrolyte molecules are completely dis-
sociated, and the electric field produced has a significant effect on electrification. The diffusion coefficients
and charge numbers of the positive and negative ions are assumed to be equal. I addition, for definiteness
we assume that only negative ions are involved in the electrochemical reactions on the tube walls, and the neu-
tral molecules formed are present in excess in comparison with ions. The solution obtained can easily be ex-
tended to the case of arbitrary ion charge numbers and electrochemical reactions involving ions of both kinds
on the tube walls.

1. The system of differential equations and boundary conditions at the tube entrance B and on the wall S,
describing the electrification of an organic liquid, has the form

div (niu + ’—:12 n.E— 'DVn:t) =0,
edivE = 4nez(ny —n_), 10t E=0, ny|p=no, (1.1)

([%l—,? n,E— DVn+] -v)‘s =0, ([— %,D— n_E— DVn.,]w)lS =K (n_—ne) [,

where n, is the concentration of positive and negative ions; u, liquid velocity; e, proton charge; z, D, charge
number and diffusion coefficient of the ions; k, Boltzmann constant; T, temperature of the liquid, which is as-
sumed to be constant; E, electric field; ¢, dielectric constant of the liquid; n®, concentration of positive or
negative ions at the tube entrance; n,), equilibrium concentration of negative ions at the tube wall, which is at-
tained at the end of an infinitely long tube; K, constant of electrochemical neutralization of negative ions; v,
normal to the inside surface of the tube.

The last boundary condition (1.1) is fulfilled in the case where the neutral molecules formed by neutraliza-

tion of negative ions on the tube walls are present in the solution in concentration ng, which is much greater
than the ion concentration. We then have the relation
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([—%Il‘zn E—DVn._ ] ) = Kn_ —KsnsEK(n"‘_—nw)’

in which Kq is the constant of the reaction that is the reverse of ion neutralization. Since, according to the con-
dition ng >»>n-, even in the case of complete neutralization of all the negative ions the relative change in con-
centration ng wiil be small, and it can be neglected. Hence, the quantity n,; = Kgng/K in relations (1.1) is
agsumed to be constant. It is obviously equal to the negative-ion concentration at the tube walls in the equilib-
rium case, when Kn. =Kgng. Thus, according to the last relation in (1.1), there is a flux of negative ions,
which decreases with increasing distance from the tube entrance, towards the tube wall, where they lose their
charge. The neutral moleculeg formed pass into the solution and are removed by the flow of liquid, which en-
sures the steady-~state nature of the electrification of the liquid in the tube, as is actually observed [2-4]. Elec-
trification mechanismg leading to adsorption of neutral molecules on the tube walls will not, as we know [2-3],
cause steady-state electrification. In a motionless liquid in a metal container an electrochemical reaction in-
volving negative ions will also occur on the walls, of course. In this case, however, the ions will eventually
acquire an equilibrium distribution, when their flux to the walls becomes zero. Immediately next to the walls

- =Kgng/K, and at a distance from the walls much greater than the Debye radius pq of the liquid, we have
n_ =n’ The electric field and charge dengity will be nonzero practically only at the walls of the container, in
a layer of thickness ~pq. I K » Kg, then ng >» n_. When the liguid from a container with characteristic
dimension much greater than pq is pumped through a narrow tube, the ion concentration at the tube entrance
can be regarded as equal to the ion concentration in the bulk of the liquid inthe container (n%. As a result, the
negative ions lose their charge on the tube walls. With increase in distance from the tube entrance their con-
centration at the walls will tend to equilibrium, i.e., to Kgng/K = n, and the electrification of the liquid will
decrease.

From experimental data [2-4] for the electrification and conductivity of organic liquids we can estimate
the maximum relative change in the concentration of ions involved in the reaction on the wall. In many cases it
is much less than unity. The value of nw contained in the boundary condition on the tube wall will differ little
from the value of n’

ny, ~n°

>1

and in the considered problem there appears a small parameter

. B, —n® . Ko, 1 1
= T——*——nr-i- ik,
determined by the constants Kg, ng, K, and n®, which characterize the physicochemical properties of the liquid
undergoing electrification.

The effect of electrification of organic liquids on their flow can usually be neglected, and the character-
istic settling length of the Poiseuille distribution of the liquid velocity in the tube is much smaller than the
characteristic length L, of the initial part of the tube, where the electrification of the liquid mainly occurs.
Hence, for the liquid velocity u we can use the Poiseuille formula.

We introduce a cylindrical coordinate system (x, r, 8), whose x axis coincides with the tube axis. Con-
verting to dimensionless variables in (1.1)

* * x__ U % _ R s Tt
z r w=—<, E*=>=E

k1 r
LR -3 T =T

expressing the quantities n}*, E* in terms of the small parameter v (n*, =1 + yn!, E* = yEY) and linearizing
Eq. (1.1), we find
anly . 1
Pe (1 —r#?) - + div* (B! — V*n}) =0,
div: E' = ﬁ—z(n.,_ —nl), ot*El =0, n}[p=

[£:— (1) Tls =0, [~ B2 — (1) TJs = K* (uL + 1) ls,

B .. KR 1 ekl
Pe =" K* =" De=n | oo
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where u’ is the velocity of the liquid onthe tube axis; Pe is the Péclet number; De is the dimensionless Debye
radius of the liquid; the dash denotes the derivative with respect to r*.

Introducing the new variables g* =n} —nl, n* =nl +nl; we finally obtain the following system of equa-
tions and boundary conditions:
ag* *
Pe (1 —r*¥) 75 — A*g* + %52: 0,

“dn* . . = q*
Po(1—r*) 225 — Atw* =0, div Er = L,

q* ]xt=o =0, n* lx*=o =0, [E: - ";' (n* + 9*,)]

(1.2)

P¥==]

=K* [é (n* — g*) + 1]

1w
R L )|

The electric charge density q is connected with its dimensionless value q* by the equality q = ezyg*n’.
The quantity L, introduced above is obviously the same as the characteristic settling length for equilibrium
ion concentrations in the tube (when x > L, the ion concentration can be regarded as independent of x). Since
usually L > min(l, De), then in the operators A*, div* the derivatives with respect to x* are small in com-
parison with the derivatives with respect to r*, and they can be neglected. The electric current J flowing
through the tube cross section and its dimensionless value J* are calculated from the formulas

R 1
J = ZnS quyrdr, J* = J/(ezyu®R*n®) = 21 \ g* (1 — r*2) redr*, (1.3)
0 0

2. To solve the problem (1.2) we use the Laplace transform. Converting from the functions g* (x*, r*}),
n* (x*, r*), Eir(xi", r*) to their images Q{p, r*), N(p, r*), Y(p, r*) (p is a complex variable) we find that the
latter satisfy the following system of equations and boundary conditions:

Q"+ Q'/r* —[pPe(1—r*)+ De™?]Q =0,

N 4+ N'/rt + pPe(1 —r*) N =0, (r*YY/r* = Q/2 De?; (2.1)

S S (2.2)

r#= ¥y P

[r—tw+o|._ o [r+iwv—0) +5w—0]

The substitution Z = ar*2, ¢ = (~p Pe)/2, Q(r*) = V(Z) exp(~Z/ 2) brings the first equation of (2.1) to the form
ZVt 4+ (4 — 2Z2)V! —aV =0, a = 1/2 — (1/4)(e — «—'De—?). (2.3)
The equation is a confluent hypergeometric equa;:ion [7]. The regular zero solution of this equation is a

Kummer function [7]

Z , ala+1) 2°
T+1-(1+1)ﬁ+”f

®(e,1,2) =1+
Thus, for Q we have
Q = A(P)G. (p, ™), G, =D(a, 1, ar*?) exp (—ar*?/2),

and in a similar way we find the functions N{p, r*), Y(p, r*)

" N = B(p)Gy (p, r*), Gy, = O(b, 1, or*?) exp (—ar*?2),

r¥
1 1 o
Y=o A H(p, ), H=3 S Ga(p, TH)T*dr*, b= — T
0

2D

The coefficients A and B are found from the boundary conditions (2.2):

A4=2p7*[Gy/Flumy, B = — 27 [(Ga — H/De?)/F||rsmy,
F =[(GaGoY + 264G/ K* — (H/De?) (Gy + 2G5/ K*)] [rat
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The function Q(p) has poles at the point p = 0 and points pi= 0 (k =1, 2, 3, ...), which are zeros of the
function F(p); 0 > Re (py) > Re (py) > ... . Using the expansion theorem [8] and calculating the residues of
the function Q(p) exp (px*), we obtain the following expression for the electric charge density g

Ap—1

+ ; (nk i 1)] lim 2 ng—1 [(p - pk)nk 0 (pa r*) exp (pz*)}}: (2-4)

PPrdp

21, (r*/De)
I, (1/De) + 8Do* I, (1/De)

g = yezn®q* = yezn® {

where I, I, are modified Bessel functions of zero and second order; ny is the order of the pole Py
There are similar expressions for the functions n* (x*, r*), Ei.(x* , X},

3. We introduce the function
(De, K£*)= [PeminRo (— py)] = [min Re (a,%)]“.
Rk

If x* > APe all the terms of the sum in relation (2.4) are small. Hence, when x* > A Pe the electric
charge density in the tube depends weakly on x * and electrification practically ceases. The characteristic
electrification length introduced above can then be determined by the equality Ly =A Pe R.

Figure 1 shows a plot of the dimensionless electrification length (divided by the Péclet diffusion number)
against the parameter De?. It is apparent that an increase in Debye radius initially leads to a great increase
in the characteristic electrification length. With further increase in Debye radius the characteristic electrifica-
tion length changes by a small amount. A plot of LJ/Pe against the dimensionless rate of the chemical reac-
tion on the wall is shown in Fig. 2 (in Figs. 2-4 De =1). The rate of the reaction on the wall has a great effect
on the characteristic electrification length of the liquid. Reduction of the rate of the electrochemical reaction
on the wall leads to an increase in the characteristic electrification length of the liquid. Figure 3 shows a
plot of the dimensionless electric current J*, calculated from the formula (1.3), against the dimensionless
channel length x* (in the calculations we took Pe =10%. An increase in tube length leads initially to a great
increase in theelectric current, and then it becomes insignificant (after the tube length becomes much greater
than the electric charge relaxation length). For curves 1, 2 we have K* =1, «, respectively. When x* — o
the electric current tends to a maximum value

8ryezn®R? De?r o (1/De)
I, (1/De) + 8De’I, (1/De)’

Jmax =

Plots of the dimensionless electric charge density q* against the dimensionless tube radius r* for different
values of the dimensionless length x* are shown in Fig. 4. For curves 1 and 2 we have x* =1000 and « (K* =
»), respectively. The electric charge density has a minimum value on the tube axis and a maximum value on
the wall. Near the tube axis the variation of the electric charge density is slower than nearthe tube wall.
With increase in distance from the tube entrance to the considered cross section the profile of the electric



charge density distribution changes and tends to the profile for an infinitely long tube, shown by curve 2 in
Fig. 4. This curve is given by the first term on the right-hand side of expression (2.4) for q.

We thank V. V. Gogosov and V. V. Tolmachev for useful discussion of the work.
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ELECTRIFICATION OF A METAL BODY IN AN AEROSOL FLOW
WITH A SOLID DISPERSE PHASE IN THE PRESENCE OF A CORONA
DISCHARGE FROM THE BODY

V. L. Kholopov and L. T. Chernyi UDC 532.5:537

The electrification of a metal body in a flow of uncharged monodisperse aerosol with a solid disperse
phase is investigated within the framework of continuum mechanics [1]. The corona discharge from the body
is taken into account. We consider cases of well-conducting aerosol particles, for which the electric charge
relaxation time is much greater than the time of impact with the body. A closed system of equations and bound-
ary conditions describing the electrification of the body is obtained. We determine the main dimensionless
parameters affecting the electrification of the body. We obtain expressions for the electrification current, the
maximum coronga current, the floating charge and potential of the body, the maximum corona overvoltage, and
the characteristic time for establishment of the floating charge on the body. The main dimensionless charac-
teristics of electrification of a sphere with a spark gap are calculated.

1. We consider a metal body with a spark gap in a steady flow of uncharged monodisperse aerosol with
a solid disperse phase. As is known [2], the aerosol particles are charged by collisions with the body. The
body consequently acquires an electric charge that is opposite in sign to the particle charge. This effect is ob-
served when bodies move through clouds, precipitation, and a dust-laden atmosphere [3]. It can be used in elec-
‘tric probes designed for measuring the parameters of aerosol flows [4].

Using the methals of continuum mechanics [1, 5] we will consider the averaged motion of a monodisperse
aerosol flow past a body as the interpenetrating motion of two continuous media — gas and aerosol particles.
We assume that the concentration of the latter is fairly low and their effect on the gas motion can be neglected.
Then, in the investigation of the electrification of bodies the motion of the gas can be regarded as prescribed.
The averaged motion of the aerosol particles before collision with the body is described by the following equa-

tions:
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